Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Membranes (Basel) ; 13(4)2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37103809

ABSTRACT

The hollow fiber membrane modules act as dehumidifiers and regenerators to avoid gas-liquid entrainment problems in direct-contact dehumidification systems. A solar-driven hollow fiber membrane dehumidification experimental rig was designed to investigate its performance from July to September in Guilin, China. The dehumidification, regeneration, and cooling performance of the system between 8:30 and 17:30 are analyzed. The energy utilization of the solar collector and system is investigated. The results show that solar radiation has a significant influence on the system. The hourly regeneration of the system has the same trend as the temperature of solar hot water, which ranges from 0.13 g/s to 0.36 g/s. The regeneration capacity of the dehumidification system is always larger than the dehumidification capacity after 10:30, which increases the solution concentration and the dehumidification performance. Further, it ensures stable system operation when the solar radiation is lower (15:30-17:50). In addition, the hourly dehumidification capacity and efficiency of the system ranges from 0.15 g/s to 0.23 g/s and 52.4 to 71.3%, respectively, with good dehumidification performance. The COP of the system and solar collector have the same trend, in which their maximum values are 0.874 and 0.634, respectively, with high energy utilization efficiency. The solar-driven hollow fiber membrane liquid dehumidification system performs better in regions with larger solar radiation.

2.
Membranes (Basel) ; 13(2)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36837736

ABSTRACT

Hollow fiber membrane dehumidification is an effective and economical method of air dehumidification. The hollow fiber membrane module is the critical component of the dehumidification system, which is formed by an arrangement of several hollow fiber membranes. The air stream crosses over the fiber bundles when air dehumidification is performed. The fibers vibrate with the airflow. To investigate the characteristics of the fluid-induced vibration of the hollow fiber membrane, the two-way fluid-structure interaction model under the air-induced condition was established and verified by experiments. The effect of length and air velocity on the vibration and modal of a single hollow fiber membrane was studied, as well as the flow characteristics using the numerical simulation method. The results indicated that the hollow fiber membrane was mainly vibrated by fluid impact in the direction of the airflow. When the air velocity was 1.5 m/s~6 m/s and the membrane length was 100~400 mm, the natural frequency of the membrane was negatively correlated with length and positively correlated with air velocity. Natural frequencies were more sensitive to changes in length than changes in air velocity. The maximum equivalent stress and total deformation increased with air velocity and length. The maximum equivalent stress was concentrated at both ends, and the maximum deformation occurred in the middle. The research results provided a basis for the structural design of hollow fiber membranes under flow-induced vibration conditions.

3.
Membranes (Basel) ; 12(8)2022 Aug 18.
Article in English | MEDLINE | ID: mdl-36005708

ABSTRACT

The applicability of a hollow fiber membrane evaporative cooler in hot-dry regions was investigated by experimental studies. To better understand the actual operating environment of the hollow fiber membrane evaporative cooler, the outdoor air design conditions for summer air conditioning in five cities were simulated by an enthalpy difference laboratory. Subsequently, the effects of water and air flow rates on outlet air parameters and performance parameters were investigated by setting-up a hollow fiber membrane evaporative cooling experimental rig. It was found that the hollow fiber membrane evaporative cooler has good application prospects in hot-dry regions such as Lanzhou, Xi'an, Yinchuan, Urumqi, and Karamay. Among them, the hollow fiber membrane evaporative cooler has higher applicability in regions with higher air temperatures and lower humidity such as Urumqi and Karamay. The results indicate that the air outlet temperature and relative humidity ranged from 26.5 °C to 30.8 °C and 63.5% to 82.8%, respectively. The outlet air temperature and relative humidity of the HFMEC can meet the thermal comfort requirements of hot-dry regions in the summer at an appropriate air flow rate. The maximum air temperature drop, wet-bulb efficiency, cooling capacity, and COP were 7.5 °C, 62.9%, 396.4 W, and 4.81, respectively. In addition, the effect of the air flow rate on the performance parameters was more significant than that of the water flow rate.

4.
Membranes (Basel) ; 11(12)2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34940420

ABSTRACT

Cross-flow hollow fiber membranes are commonly applied in humidification/dehumidification. Hollow fiber membranes vibrate and deform under the impinging force of incoming air and the gravity of liquid in the inner tube. In this study, fiber deformation was caused by the pulsating flow of air. With varied pulsating amplitudes and frequencies, single-fiber deformation was investigated numerically using the fluid-structure interaction technique and verified with experimental data testing with a laser vibrometer. Then, the effect of pulsating amplitude and frequency on heat and mass transfer performance of the hollow fiber membrane was analyzed. The maximum fiber deformation along the airflow direction was far larger than that perpendicular to the flow direction. Compared with the case where the fiber did not vibrate, increasing the pulsation amplitude could strengthen Nu by 14-87%. Flow-induced fiber vibration could raise the heat transfer enhancement index from 13.8% to 80%. The pulsating frequency could also enhance the heat transfer of hollow fiber membranes due to the continuously weakened thermal boundary layer. With the increase in pulsating amplitude or frequency, the Sh number or Em under vibrating conditions can reach about twice its value under non-vibrating conditions.

5.
Article in English | MEDLINE | ID: mdl-34300066

ABSTRACT

This study aimed to determine whether heart rate variability (HRV) can express the thermal comfort of mine workers. Eight subjects ran on a treadmill (5.5 km/h) to simulate heavy labor in three kinds of mining environments (22 °C/90%, 26 °C/90%, 30 °C/90%), respectively. Based on the measured electrocardiogram (ECG) data, the HRV of the subjects was calculated. The results showed that the HRV indices changed obviously under different temperature environments. In the neutral and hot environment, except for the LF, TP and LF/HF, there were significant differences in each index. However, there was no significant difference between the cold and neutral environments. The R-R intervals, the very low-frequency power (VLF), pNN20 and SampEN had strong negative correlation with the thermal sensation of people from sitting to work (ρ < -0.700). These indices may be used as thermal comfort predictive biomarkers of mine workers.


Subject(s)
Miners , Biomarkers , Electrocardiography , Heart Rate , Humans , Thermosensing
SELECTION OF CITATIONS
SEARCH DETAIL
...